## Revisiting graph-cut segmentation with SLIC and color histograms [w/Python]

As part of the computer vision class I'm teaching at SBU I asked students to implement a segmentation method based on SLIC superpixels. Here is my boilerplate implementation.

This follows the work I've done a very long time ago (2010) on the same subject.

For graph-cut I've used PyMaxflow: https://github.com/pmneila/PyMaxflow, which is very easily installed by just `pip install PyMaxflow`

The method is simple:

• Calculate SLIC superpixels (the SKImage implementation)
• Use markings to determine the foreground and background color histograms (from the superpixels under the markings)
• Setup a graph with a straightforward energy model: Smoothness term = K-L-Div between superpix histogram and neighbor superpix histogram, and Match term = inf if marked as BG or FG, or K-L-Div between SuperPix histogram and FG and BG.
• To find neighbors I've used Delaunay tessellation (from scipy.spatial), for simplicity. But a full neighbor finding could be implemented by looking at all the neighbors on the superpix's boundary.
• Color histograms are 2D over H-S (from the HSV)

## Bust out your own graphcut based image segmentation with OpenCV [w/ code]

This is a tutorial on using Graph-Cuts and Gaussian-Mixture-Models for image segmentation with OpenCV in C++ environment.

Update 10/30/2017: See a new implementation of this method using OpenCV-Python, PyMaxflow, SLIC superpixels, Delaunay and other tricks.

Been wokring on my masters thesis for a while now, and the path of my work came across image segmentation. Naturally I became interested in Max-Flow Graph Cuts algorithms, being the "hottest fish in the fish-market" right now if the fish market was the image segmentation scene.

So I went looking for a CPP implementation of graphcut, only to find out that OpenCV already implemented it in v2.0 as part of their GrabCut impl. But I wanted to explore a bit, so I found this implementation by Olga Vexler, which is build upon Kolmogorov's framework for max-flow algorithms. I was also inspired by Shai Bagon's usage example of this implementation for Matlab.